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Abstract We demonstrate the use of advanced linear stability toaleldped for
the spectral-element codlek 5000 to investigate the dynamics of nonlinear flows
in moderately complex geometries. The aim of stability gitons is to identify
the driving mechanism as well as the region most sensititbeganstability: the
wavemakerWe concentrate on global linear stability analysis, whiohsiders the
linearised Navier—Stokes equations and searches for ggosrmall disturbances,
i.e. so-called linear global modes. In the structural sengjtiznalysis these modes
are associated to the eigenmodes of the direct and adjo@grised Navier—Stokes
operators, and the wavemaker is defined as the overlap ofrhrgsst direct and
adjoint eigenmodes. The large eigenvalue problems aredalging matrix—free
methods adopting the time—stepping Arnoldi approach. \iegmt here our imple-
mentation inNek 5000 with the ARPACK library on a number of test cases.

1 Introduction

The flow of fluids can be either laminar, characterised by ¢mpatterns, or tur-
bulent, appearing chaotic and unpredictable. Understgritie physics of laminar-
turbulent flow transition has been originally motivated byadynamic applications,
but has become more widespread since. Initially, hydroghyoatability was stud-
ied by means of the classical linear stability theory inigeding the behaviour of
small disturbances in space and time around some basic fate: Jthe exponen-
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tial growth of linear perturbations is studied at each sinwése position and the
distinction between local convective and absolute stghgimade [12]. This local
treatment is legitimate for parallel and weakly non-paidlows, but many of the
flow configurations developing strong instabilities andravally exhibiting transi-
tion to turbulence are strongly non-parallel and may belanthe open flow cat-
egory, where fluid particles continuously enter and leaeedbnsidered domain.
Such unstable open flows require global analysis where tbleitgan of perturba-
tions is considered in the whole physical domain [6]. Thebgldehaviour of the
flow depends on the competition between local instability basic advection. The
extensive work on global stability in the past years has beeiewede.g.in [17].

However, such linear modal analysis often fails in predigtthe transitional
Reynolds number determined experimentally, and the marerate transition sce-
nario based on receptivity has to be considered. In this tteesaon-normality of
the linearised Navier-Stokes (LNS) operator has to be takeraccount [6, 18] and
the global modes of the adjoint operator have to be calalildteis kind of analysis
has been performed for the 2D cageg.the flow past a circular cylinder [9]. The
limitations of structural sensitivity analysis are dissed by Chomaz [6], where it
was pointed out that this method is better suited for stypngh—parallel flows than
for almost parallel flows, as the very high degree of the dperaon—normality can
lead to wrong predictions of the dynamics.

Although global analysis allows to avoid the limitation othl theory, it is com-
putationally much more expensive, as linear global modes baen associated to
the eigenmodes of the LNS operator [10] involving large eugdue problems. For
sizes of order dirfA) ~ 10 special matrix-free methods using time-steppers are re-
quired [2, 3]. Recent advances in numerical methods, inquaat tools for solving
very large eigenvalue problems [15], make it possible tolingar stability theory
for global analysis of 2D and 3D flows with nearly arbitraryngalexity, based on
only minimal modifications of existing numerical simulaticodes [4]. A number
of authors have determined the spectrum of the LNS operaitalifferent 2D flows,
however, the first calculations for the fully 3D base flow wdome by Bagheret
al. [3, 16] for a jet in crossflow (JCF). This work has been latéerged in [13] by
calculating 3D adjoint global eigenmodes.

The objective of the present paper is to demonstrate thefuglelml linear sta-
bility tools developed for the spectral-element cdék 5000 [8, 7] to investigate
the dynamics of flows in moderately complex geometry. As thal ftase we con-
sider the so-called jet in crossflow which refers to a jet aidflexiting through a
nozzle and interacts with the surrounding cross-flow fluids la canonical flow
with complex, fully 3D dynamics which allows for a test of thienulation capabil-
ities and the methods for studying the flow stability. Thevpres results for this
flow [3, 13, 16] were obtained for simplified setups, in whitle inflow jet was
represented by a Dirichlet boundary condition due to thé&ditions of the applied
pseudo-spectral simulation method. We avoid this linotatising the more flexible
spectral-element method (SEM), which provides spectrali@cy while allowing
for complex geometries.
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2 Direct and adjoint global modes

Structural sensitivity analysis determines the instghbitiechanism that initiates the
transition to an unsteady flow. It combines global lineabidity with receptivity
looking into the eigenmodes of the LNS (direct) operatoand its adjointAT,
where the adjoint operator is defined by the propéuy; Au) = (ATu',u), with
ut,u and (-,-) being vector functions and inner product, respectivelye Thear
stability analysis of the direct problem let us determineesal characteristics: the
parametersd.g.Reynolds number) at which the flow first becomes unstablettand
frequenciesuy, growth ratecy and spatial structure of the linear perturbations. On
the other hand, the adjoint system provides informatiorheroptimal way to excite
the instability, as the perturbation in receptive regiomphliyymore due to forcing. In
combination the two types of modes can be used to locate tlsesrasitive region
in the flow known asvavemakerwhich is defined as the overlapof the directi
and adjointi" strongest global modes [6, 9, 11] (see Figs. 2 and 6),

Nn(Xo) = 1)
The wavemaker is the region in the flow where a variation inftb structure
provides the largest drift of the eigenvalues and thergbarpoints the most likely
region in the flow for the inception of the global instability

We consider the incompressible Navier—Stokes equatioeallised about a base
flow Uy in non-dimensional form withu, p and Re being velocity and pressure
perturbation and the Reynolds number, respectively,

du 1
—4u-O Ou—=—D%u+0Op="f 2
dt+u Up+Up-Ou Re u+0p , (2)
Ou=0 inQ, (3)
u=0 ondQ,, 4)
1
pn—R—eDu~n:0 onoaQ, . (5)

Two last equations are the boundary conditions (BC) on thfase of the computa-
tional domainQ. Subscripty ando stand for regions where eitheelocity(Dirich-

let) or outflow BC are specified, and denotes the outward normal. The forcing
f usually vanishes insid®, but may be used as sponge layers at inflow/outflow
boundary. The corresponding set of adjoint equations reads

L"'T+(DU Ut~ Up- Ou' 4+ — (2ut 4 Op' = f 6
ot b) ' —Up-Du'+ = D'+ 0p" =1, (6)
Ou'=0 inQ, (7)

ut =0 ondqQ,, (8)

+
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Fig. 1 (a) Vortical structuresA, isolevels) of the base flow for JCF setup including the pipe.
(b) Mesh structure at the connection of the circular pipe wiih tectangular box. The element
boundary and the position of the GLL points are shown.

whereu® andp' are adjoint perturbations. Notice the change of sign in thegons
and the fact thabutflowBC are inhomogeneous.

The solution to the direct and adjoint problem is computeidgis. Legendre
polynomial based SEM implemented Mek5000 [8]. In this method the gov-
erning equations are cast into weak form and discretiseganesby the Galerkin
approximation, following théyy — Py_2 approach. The velocity space is spanned
by Nth-order Lagrange polynomial interpolants, based on tepsmluct arrays of
Gauss-Lobatto—Legendre (GLL) quadrature points in a leleshent. The individ-
ual elements take the shape of hexahedra which can themiséainaed using gen-
eral coordinate mapping as shown in Fig. 1(b).

Nek5000 does not support the general inhomogeneous BC as given .above
Therefore, to keep direct and adjoint problems consistestset homogeneous
Dirichlet BC on alld Q. To avoid reflections we use a sponge fordirgA (x)(Up —

v) at the inflow/outflow boundaries, whevestands fou or u™ andA (x) is a smooth
step function [5]. The dependency of the operator spectth@applied BC for the
flow past circular cylinder case is discussed in Section 4.

To obtain the base flow one has to find the steady state solafidine non-
linear Navier—Stokes equations, which in many of the careid cases is unstable,
in particular for strongly convectively unstable flonsd. JCF). We compute the
base flow using selective frequency damping (SFD) [1], whiaimps the oscilla-
tions of the unsteady part of the solution using a temporalpass filter by setting
f = —x(u—w), whereu is the flow solution andv its temporally low-pass-filtered
counterpart obtained by a differential exponential filtgr= (u —w)/A. The am-
plitude of the forcinge = ||(u—w)|| in Q is a good indicator of convergence; 2D
test cases reached levelss 1013, whereas the computationally more expensive
3D runs were stopped at 18 or 10~ depending on the resolution, which is lower
than the tolerance used for eigenvalue calculation §L0An example of such a
SFD base flows for JCF and cylinder flow are presented in F{@$.ahd 2.
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Fig. 2 Two-dimensional flow past a circular cylinderRé= 50. The upper part shows the velocity
magnitude of the base flow, and the lower part presents the pvientetionn for the strongest
direct and adjoint modes. This plot can be compared with Figsd8@nn Ref. [9].

The eigenvalue problem is then constructed rewriting th& leijuations in oper-
ator formu; = Au and assuming(x,t) = 0(x) exp(—iwt), whereli(x) is the global
mode andw its complex eigenvalue. For general 3D flows the size of thima
prohibits its explicit construction, so only the actionAfon the vectou can be
calculated. Solving the eigenvalue problem can then besgetiusing the so-called
time-stepper methodg. an iterative technique based on orthogonal projectioh of
onto a lower-dimensional subspace, in which the Arnoldoatgm is applied and
the Krylov subspace is constructed using snapshots takentfre evolution of the
flow field u separated by a constant time interddl To avoid frequency aliasing
At must be small enough such that at least two sampling poimsérperiod of the
highest frequency mode are included (seg Ref. [2]). In presented studies we do
not consider dependency of calculated spectra on the sikeylifv space andit.
The other important parameter is the actual time stepf the simulation, which is
related to the CFL condition. In our simulations we havegggtourant numbers in
the range M5— 0.2 and found significant dependency of the operét@pectra if
the cases were marginally resolved in space. On the othet, e fully resolved
2D simulations show little dependence of the spectra on thed@ht number.

In our implementation we use the implicitly restarted Adiahethod (IRAM)
from the ARPACK library [15]. We solve for the generalisedeivalue problem
Al = —iwB0(, whereB is the mass matrix. It allows us to simplify the treatment of
the duplicated values of the velocity field at the element¢$aand to get the exact
value of the inner product applied in the orthogonalisatitap.

3 Poiseuille Flow

To validate our implementation we performed a number oftestresponding to
different flow configurations. The first one is plane Poidedlbw, in which a fluid
is moving laterally between two plates whose length and lwidtmuch greater
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Fig. 3 Spectra (growth ratey versus frequencyy ) for the different simulations of plane Poiseuille
flow at Re= 2000. We utilise the negative and positiwe parts to compare different cases. Left:
Comparison of the spectra bEk5000 run with N = 17 (1) with results of the local analysis (2)
and the low resolutioN = 11 (3). Right: Relative error of the growth ratéw ) for N =17 as a
function of cx with respect to local analysis (1) and the spectra of the adjqatator (2).

than the distance separating them. This 2D parallel flow eatrdated exactly by
local analysis. We performed our calculations Re= 2000 (based on centreline
velocity and channel half height) on a rectangular grid oéanwise length 2
with periodic BC, built of 6<6 spectral elements with polynomial ordeéranging
from 11 to 17. We compared our result with local analysis (&mmisola, private
communication) and found very good match for the first 10@iglues calculated
for N =17 (Fig. 3). Although only 3 modes with the highest frequeaey> wnax~
21 are visibly displaced, we can see slow decrease of agcwitit growing .
This becomes more pronounced with decreadings the maximum frequency of
the well resolved waveunax~ 16 for N = 11) is getting lower and thus a small
number of spurious modes appears. Similar conclusions eairdwn comparing
direct and adjoint modes, however the threshold frequeacyaist relative error
growth appears to be lowetfax= 12 forN = 17). There is also a number of modes
clustered aroundy = 0, with relative error of order I which all correspond to
highly damped modes.

4 Flow Past Circular Cylinder

The next case is the plane wake behind a circular cylindeciwik a canonical 2D,
non-parallel flow extensively studied in the literaturs. $tructural sensitivity was
investigated in Ref. [9] and we compare our results agamstwork adopting the
grid from [14], where the cylinder of unit diameter was plde (0,0) in the grid
extending from -15 to 35 and from -15 to 15 in streamwise ands:flow directions,
respectively. We performed a number of runs Re= 40, 45 and 50 (based on
diameter and incoming velocity) calculating the most uplgtaglobal modes and
their overlap functiom. Very good agreement with [9] is obtained. An example of
a base flow and a wavemaker fee= 50 is presented in Fig. 2 which can readily



Stability Tools for Nek5000 7

0.1

o

-0.1

3-0.2

-0.3

-0.4

-0.5

Fig. 4 Spectra of the direct operator for the flow past circular dginatRe= 50. Left: Case with
outflow BC in the non-symmetric box (1) compared with results of@R& code (2) and run in the
symmetric box (3). Right: Cases in non-symmetric box with diffe@@t (1) outflow (the same as
(1) on left plot), (2) Dirichlet without sponge, (3) Dirichlavith sponge applied to inflow/outflow
regions. (4) symmetric box with Dirichlet BC and sponge.

be compared with Figs. 8 and 17 in Ref. [9]. The left plot in.Fgnegativewy)
presents the comparison of the calculated spectra of thetdiperator foRe= 50
with the results of CPL code, which is a modified version of teee employed
in [9] (I. Lashgari, private communication). There is gogteement for the least
damped, low frequency modes, but we observe a relativectttie modes growths
with increasingyy and decreasingy. These weaker modes are very sensitive to the
exact simulations details such as grid size and boundargitoms. Furthermore,
we present results of the runs with outflow BC (Eq. 5) for ngmetric & €
[—15,35]; crosses) and symmetrig € [—35,35]; triangles) mesh; the two meshes
differ in the extent of the upstream (inflow) part which is ionfant for the adjoint
simulations. There is clearly sensitivity of the spectréhise details as the position
of the branches is moved. The dependency of the spectra apjiied BC and grid
size is illustrated in Fig. 4. We found the Dirichlet BC coméd with the sponge
forcingu andu® at inflow/outflow to be the least sensitive to the grid and westh
use these settings in the remainder of our study. The relatikor of the growth
rate pertaining to the direct and adjoint modes for this sésulower than 108
(not shown). The resolution studies for this case showethgtdependency of the
spectra on the polynomial ordisrwith the frequency of the poorly resolved modes
shifted towardsy = 0.

5 Jet in Crossflow

The most complex flow case considered in this study is thenjetassflow (JCF),

which is a non-parallel and fully 3D flow referring to a jet afifl exiting a pipe and
interacting with the boundary layer perpendicular to theepirifice (see Fig. 1). For
the detailed description of the case we refer to Refs. [3, \W&] consider two dif-

ferent setups of this flow: one corresponding the simplifitds of llaket al. [13],



8 A. Peplinski, P. Schlatter, P. F. Fischer, and D. S. Henningson

0.01 0.0
1+ 1+
2 0 o 20
ofl3s & 002 S S
0.01 + & 001
Yla
0.02 0 & &
<3 3
0.03 8 -0.01 eTe
© b b
004t Ot +C§b ++ -0.02 ++@+ +@++ 1
(©) o+ + A A 4 A +
0.05 + 5l EIN AAK -0.03 d ~ ~ o)
0] hd hd 0]
008 s 06 04 0z 0 o0z o4 06 o8 %8 w08 w04 w0z 0 0z 04 05 08
w’ u)r

Fig. 5 The spectra of the direct and adjoint operator for JCF for vloatio R= 1.5. Left plot
corresponds to the simplified setup discarding the pipe and pseentirect operator spectra
for high (1) and low (2) resolution runs together with the ajemperator spectra of the high
resolution run (3). The right plot shows the spectra of the tli{fBicand adjoint (2) operator for the
setup including pipe in the consideration.

in which the inflow jet was represented by a Dirichlet bougdarndition, and the
more realistic one with the pipe included in the domain asvshio Fig. 1. For the
simplified setup, we made two major changes compared to R&f.i] no fringe re-
gion as the SEM code does not require periodic BC in the stréserdirection, and

i) the length of the box is longer (150 versus 75 units in J18Je increased the box
length because we found the result to be very sensitive tkiayof disturbances;
especially the proper treatment of outflow BC proved to beiatuso in an effort
to reduce its influence we increased the downstream pareafrid together with a
sponge region. This extreme sensitivity of the simplifiedr #@n be related to both
strong non-normality of LNS operator, but also to the "ungibgl” u = O Dirichlet
BC at the pipe orifice, which is very close to the dynamicaityportant region. For
the same reason we were not able to reproduce the result8Joilour runs we
set the jet to free-stream velocity ratidto 1.5, and the Reynolds number at the
jet positionRe= 1782 (based on free-stream velocity and cross-flow displacemen
thickness). The jet diameter and pipe length are equal 3 @nohi?s, respectively.

Most of our runs we performed studying the simplified setug ae found it
very sensitive to the grid resolution. On the left plot in Figthe results of the
higher resolution (polynomial ordéd = 9, crosses) are compared with the lower
resolution Nl = 6, circles) and the spectra of the adjoint operaltbe(9, triangles).
The increased resolution causes the initially unstable ffmsitive growth rate of
the strongest mode) to stabilise, as the whole spectra staftn. Comparison of the
direct and adjoint spectra also shows that the &Ven9 resolution is only marginal,
as the lowest value of the growth rate ere¢y ) is on the order of 10%.

Similar conclusions can be drawn comparing the direct é@ssand adjoint
(circles) spectra of the high resolutioN & 9) run including the pipe (right plot
in Fig. 5). One can see a clustering of the poorly resolvediadmodes around
w = 0, which is similar to what we already observed in the cylinckese (Section
4). However, the least stable modes agree well betweert dindadjoint simulation
indicating that the main dynamics is captured well. Fig. &spnts a 2D cut through
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Fig. 6 Two-dimensional cut through the symmetry plane of the grid ford@€ setup including
the pipe forR = 1. The colours shows the value of the strongest oveglaigolevels of the direct
(dashed line) and adjoint (continuous line) strongest mode%af0% and 30% are also shown.

the symmetry plane of the grid showing isosurfaces of thectlifdashed) and ad-
joint (continuous line) strongest modes as well as theirlapen (colour). The
isocontours are placed at 1%, 10% and 30% of the maximum wdltlee modes
showing their spatial extent and illustrating considezadgparation of their max-
ima, which is related to the strong non-normality of the apar. As the plot covers
the region close to the pipe orifice, only the adjoint mode imaxn is visible. The
overlap function) features a total of three maxima of which one is clearly eslat
to the adjoint mode, located close to the steady horseshoexvapstream the jet.
The other two maxima appear in the shear layer downstreahegét forming the
wavemaker.

The analysis of 3D flows is computationally very expensivel the computation
of the single JCF spectrum withi = 9 takes about 2—3 weeks on 1024 cores.

6 Conclusions

In this work we investigated the use of linear stability ®o@ghplemented in the
SEM codeNek5000 for studying the stability and sensitivity of 3D flows with
moderately complex geometry. We validated our implemémadn a number of
2D parallel and non-parallel flow cases against the locailitaanalysis as well as
literature data. Resolution studies show that the caledlgpectra are very sensitive
to the grid resolution and proper treatment of boundary ttmms. In our simula-
tions we adopted Dirichlet boundary conditions togethéhwponge layers to keep
direct and adjoint problems consistent, however anothesipte solution would be
to adopt correct direct and adjoint outflow boundary acemydo Eqs 5 and 9. The
grid spacing defines the shortest wave length that can beegyagsolved, which
corresponds to setting the maximum possible frequencyet#iculated modes.
Higher modes then appear as spurious modes in the spectiuime kcase of the
flow past cylinder and a jet in crossflow (including the infloipg) the frequency
of the spurious modes was shifted towards zero giving dlsistespurious low fre-
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quency modes with low growth rates. Comparing direct andiatipectra is shown
to help in identifying spurious modes, but even then carefsblution studies are
necessary. The dependency of the spectra on the grid riesoligually does not
play a crucial role for 2D simulations, but it becomes an intgoat issue when mov-
ing to 3D, in particular in regions of active dynamics and ptex geometry. In this
case adaptive mesh refinement algorithms might be instriainfen future studies.
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